
ercatoJ

Living Pages
R e s e a r c h

In your J2EE project,

' development takes
42 percent longer

than the worst
estimate?

' progress has
slowed down?

' hours of delay
between coding

and testing?

' builds are a
nightmare?

' multiday transition to live
systems?

' your architecture becomes
obfuscated?

' business logic moves into JSPs?

cut the Gordian knot

cut J2EE project complexity

to solve and to innovate

ercatoJ at Henkel Group: a selected customer reference

The Henkel Group (Henkel KGaA,

Düsseldorf, Germany) operates in

three strategic business areas - Home

Care, Personal Care, and Adhesives,

Sealants and Surface Treatment. The

Company is represented in over 75

countries. 48,515 employees work for

the Henkel Group worldwide.

Henkel Fragrance Center GmbH

(HFC) develops and produces

perfume oils which are indispensable

components for many products of the

group.

Living Pages has

developed and

deployed

the new

centr

al

Get more information:
Please contact Dr. Falk Langhammer at

info@living-pages.de

Living Pages Research GmbH

Kolosseumstraße 1a

D-80469 München

Germany

Ph.: +49 (89) 189207-20

Fax: +49 (89) 189207-29 www.living-pages.de/ercatoj

“Unge

achtet

der

komplex

en Materie

wurde das

Problem

hervorragend

gelöst sowie

Zeitrahmen und Budget

eingehalten. Bei der Lösung

ercatoJ Fact Sheet

J2EE integration

lightweight integration stub

 (4 EJBs, 3 servlets)

shares users, transaction and

 session contexts

standalone for EJB-free projects is available

code archives (JARs) not required in EAR

callable by / may call other EJBs

Deployment

deployment without EJB re-deployment

deployment and testing are scriptable

sub-deployments are supported

Component-based technology

business logic encapsulated

 in small components

pool of useful components provided

extensible even in running application

stand-alone components (ercatons)

each component may define a web-service

Programming models

by Java API

by manipulation / transformation of XML

object-oriented at both, Java and XML level

declaration of actions / constraints / triggers

3rd-party XML mapping frameworks work

User interface

optional, customizable web interface

pre-configured edit cycle provided

Workflow

follow-up actions are supported

ercatoJ

e
rc

at
o
,
e
rc

at
o
n
s,

 a
n
d

 e
rc

at
o
J

a
re

 t
ra

d
e
m

a
rk

s
o
f

L
iv

in
g
 P

a
g
e
s

R
e
se

a
rc

h
 G

m
b

H
Ja

va
,
J2

E
E

,
E

JB
,
E

n
te

rp
ris

e
 J

av
aB

e
a
n
s,

 a
n
d

JD

K
 a

re
 r
e
g
is

te
re

d
 t
ra

d
e
m

ar
ks

 o
f
S

u
n

M
ic

ro
sy

st
e
m

s,
 In

c
.

a
ll

tr
a
d

e
m

ar
ks

 a
c
kn

o
w

le
d

g
e
d

©
 2

0
0

3
 L

iv
in

g
 P

a
g
e
s

R
e
se

a
rc

h
 G

m
b

H

Living Pages
R e s e a r c h

ercatons boldly go where no ejb has gone before

Key benefits:

. . for your project

edit-compile-test in seconds

hot deployment in production

separation of concerns

lines of code reduced

iterative approach is encouraged

quick response to requests for change

. . for your development work

fewer J2EE pitfalls

faster or no EJB deployment

less or no SQL required

no XML schema required

focus on business processes

. . for your product

possibly richer functionality

configurable and safe queries

modifications possible with no

interruption of service

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Operating system + SQL database

J2EE application server

SAP R/3

Your enterprise solution

ercatoJ Available modules:

support API

manager

 standard extensions, level 1

layer

advanced ersioning

service

customizable web style

enhanced web experience

remote login and scripting

(*) in v1.2
(ercatoJ and ercato.NET modules share ercato and ercatoX modules)

ask for product details

ercatoJ
] ercatoJ Base

] ercatoJ EJB

] ercatoJ TagLib (*)

] ercatoJ User

] ercatoX One

] ercato Persistence

] ercato Versions v

] ercato WebServices

] ercato InheritanceForXML

] ercato Query

] ercato SecureRôles

] ercato WebView

] ercato WebXP

] ercato Edit+Forms

] ercato Backup+Replication

] ercato Shell

] ercato WebDAV (*)

ercaton

Permission
model

XML

SQL

Java

J2EE

“Ercatons were easy to use and breathtakingly

efficient. Once you get the idea you wonder how

you ever worked without it.”

Dr. Ralf Marsula

Clavis GmbH, Bremen Solution Partner SAP

Every ercaton
encapsulates a business

object or process

Keep the J2EE model
small and focused

Every XML document
is an object

Every ercaton you
introduce absorbs

complexity

If J2EE is an operating
system, then ercatons add
to it what the many small

/usr/bin binaries add to Unix:
power and simplicity

At a glance:
how can help

ercatoJ can reduce project complexity because it is

built upon an amazingly simple yet powerful

concept: ercatons.

Every ercaton encapsulates a business object or

process and absorbs complexity.

ercatons live within the Java2 EnterpriseEdition

(J2EE) container and are built from Java objects and

XML documents. They are able to implement most

patterns in enterprise software development.

Their integration into J2EE is

based on a few Enterprise

JavaBeans (EJBs) which need

no redeployment when

software changes. Users,

transactions, sessions and the database are fully

shared. ercatons therefore do not introduce new

complexity into an existing J2EE application.

The following analogy may help to understand: “if

J2EE is an operating system, then ercatons add to it

what the many small /usr/bin binaries add to Unix:

power and simplicity”.

This analogy holds true to the point where ercatons

are not yet another framework to build this big, monolithic

application – they offer an option to build a simpler one.

J2EE problems solved

J2EE is the best standardized application server architecture

available. Still it has problems which can be addressed using

ercatoJ:

The J2EE blueprints assume that all relevant details of the

business model (as expressed at an UML level) are

implemented as EJBs and that retrievable

business data maps to persistent attributes.

This assumption is fine for a project following

the waterfall model: every detail is designed

first, then implemented.

However, many successful projects follow the

model of the Agile Process: start with a

simple system and iterate until the project goal is reached.

Such projects are left with two alternatives:

ercatoJ

1. Frequently refactor the entire J2EE model

2. Let the J2EE model contain “generic parts”

The first leads to overly complex projects because even a

simple change is a tedious and error-prone procedure. Some

changes are close to impossible after the application went

productive.

The second alternative leads to projects where most of the

time is spent to create or use a technical framework to

handle the genericity: the initial business model moves out of

focus.

Both, J2EE frameworks and J2EE-

aware IDEs only push the limit a bit

without eliminating it.

Therefore, in the typical large-scale

J2EE project, most of the time is spent “to integrate, redeploy

and address technical issues”.

ercatoJ offers a way out by proposing a third option:

3. Keep the J2EE model small and focused.

XML problems solved

XML has grown

very poular and

the marketplace

proposes several

XML-based

application servers

or XML

databases.

It is probably true

that corporate

data is best stored

in the form of XML. However, there are four problems which

can be addressed using ercatoJ:

1. Retrieval of XML is slow and not standardized

2. XML data is often restricted to a schema

3. Unlike J2EE, XML application servers are

proprietary

4. Object-oriented modelling is not supported (only mapped)

ercatoJ offers an alternative because many of the

advantages of XML are made available within a J2EE

application.

Usage examples

The ercato programming model encourages an

iterative development style. Focus on one problem

at a time. When one aspect is finished it is easily

integrated into a changing environment. Examples?

Assume you want to add business methods, data

fields or constraints. Then add some lines of

XML to an ercaton and possibly add some Java

code, too. Now just copying the changed

ercaton and possibly the changed

jar archive will do the job. It is

that easy. The J2EE

application needs no

redeployment and no

interruption of service is going to

occurr (the copy operation is

transaction-safe).

Assume you require another

column (or table) in your database

scheme, e.g., for a query operation.

Then you only need to add an XML-tag to one

(index-)ercaton and one XML-attribute to one (base-

)ercaton. That is it. The content of the new column is

now even going to reflect the production data which

existed before

and no

interruption of

service is

going to

occur.

Assume you

frequently

change the

business

logic and do

not want to update the user interface. Then

alternatively you may create a style

sheet or customize the ercatoJ

standard web style sheet. You do

this once forever. Possibly

combined with your

JSPs you end up with

a user interface which stays in sync with

the business logic and provides support

for viewing, editing, navigation and

complex search.

ercatoJ anatomy

ercatoJ uses bright ideas from several ancestors.

It uses XML to represent and persist rich structures,

XSLT may express business logic and views.

It uses SQL as an accelerator for unsacrificed

performance. Even inner and outer joins are

available. However, SQL as a language is

considered deprecated.

It uses and complements J2EE,

e.g., transactions, sessions,

authentication.

It uses an extended Unix file

system semantics (incl. x- and

s-bits) to express rôle-based

permissions by instance, not by

class. As a consequence,

protection ensures that two different

rôles may see different data from

the same SQL query.

It uses Java and its object-oriented model. Business

logic may be expressed in arbitrary Java.

It uses the Unix philosophy of many small building

blocks which cooperate towards a

whole which is more than the sum

of its parts. ercatons are the

parts, the J2EE application is the

whole. The concept of several users conributing

parts in a secure manner is implemented, too.

It uses the concept of prototype-based languages

such as ‘Self’ where objects are created without a

class.

How it all works

ercatons are the result of the ercato project to

create a server environment which does not just

export web services but is actually fully

programmable using web services. In this context,

many shortcomings of web services have been

addressed and a decent security model has been

created, to start with.

In all traditional J2EE frameworks and J2EE itself,

XML plays a helper role, as carrier of data from

model to view, or from one application to another, or

as a configuration language. In contrast, ercatoJ

treats XML as what it is: a first

class citizen. It is the first and only

J2EE-based product which does

so: XML documents contain and

store all the business data plus as

much business logic as is required.

But why is the ercato programming model that

powerful? Because it exactly starts from the simple

idea we mentioned above: treat every XML

document as being an object (and call it an

ercaton). Inheritance, polymorphism, encapsulation,

persistence, methods,

appearance etc. may all be

expressed at the declarative level

of XML. This includes some

properties of real-world objects

which software objects usually do not posses.

Additionally, the full procedural power of Java and

J2EE is made available as well.

Did you ever wonder why you should care about the

distinction between object and class when creating

an UML business model? ercatons make this

distinction obsolete and in many cases, an ercaton

just is the perfect representation of a business object

or process. On the other hand, an ercaton looks as

much as a Java object to Java code as you want it.

There is nothing to sacrifice.

Consider the following scenario: “In some

application, customer data is expressed as an XML

document with actually no Java involved. At the

same time, a customer’s account is expressed as

an entity bean delegating to an account class. Both,

customer and account have been modelled as

objects (ercaton and Java class).” We anticipate and

fully support this situation. Of course, an SQL

database will be involved, too. For maximum

freedom, ercatoJ does not restrict ercatons to any

XML schema (or XML at all...) and any Java class is

able to interoperate. It is not very elegant but

perfectly legal for some Java code to manipulate an

ercaton at the XML-DOM level.

ercatons represent business data and business

logic at the XML level. This may have introduced

problems at the levels of orthogonality and

redundancy, change management,

or consistency. Yes, and ercatoJ

solves all of them.

It is impossible in this booklet to

discuss the background of prototype-based

languages or XML node-set algebra which are part

of the scientific foundation of the ercato

programming model. Rather, we just claim the

following here: “Once an example of a business

object or a description of a business process is

written down (in XML, maybe using a text editor), the

implementation of this object or process as part of a

J2EE application is already complete or very close to

completion”. You probably need to see to believe.

ercatons boldly go where no ejb has gone before

Key benefits:

. . for your project

edit-compile-test in seconds

hot deployment in production

separation of concerns

lines of code reduced

iterative approach is encouraged

quick response to requests for change

. . for your development work

fewer J2EE pitfalls

faster or no EJB deployment

less or no SQL required

no XML schema required

focus on business processes

. . for your product

possibly richer functionality

configurable and safe

queries

modifications

possible with

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Operating system + SQL database

J2EE application server

SAP R/3

Your enterprise solution

ercatoJ Available modules:

support API

manager

 standard extensions, level 1

layer

advanced ersioning

service

customizable web style

enhanced web experience

remote login and scripting

(*) in v1.2
(ercatoJ and ercato.NET modules share ercato and ercatoX modules)

ask for product details

ercatoJ
] ercatoJ Base

] ercatoJ EJB

] ercatoJ TagLib (*)

] ercatoJ User

] ercatoX One

] ercato Persistence

] ercato Versions v

] ercato WebServices

] ercato InheritanceForXML

] ercato Query

] ercato SecureRôles

] ercato WebView

] ercato WebXP

] ercato Edit+Forms

] ercato Backup+Replication

] ercato Shell

] ercato WebDAV (*)

ercaton

Permission
model

XML

SQL

Java

J2EE

“Ercatons were easy to use and breathtakingly

efficient. Once you get the idea you wonder how

you ever worked without it.”

Dr. Ralf Marsula

Clavis GmbH, Bremen Solution Partner SAP

Every ercaton
encapsulates a business

object or process

Keep the J2EE model
small and focused

Every XML document
is an object

Every ercaton you
introduce absorbs

complexity

If J2EE is
an operating
system, then
ercatons add to it

what the many small

At a glance:
how can help

ercatoJ can reduce project complexity because it is

built upon an amazingly simple yet powerful

concept: ercatons.

Every ercaton encapsulates a business object or

process and absorbs complexity.

ercatons live within the Java2 EnterpriseEdition

(J2EE) container and are built from Java objects and

XML documents. They are able to implement most

patterns in enterprise software development.

Their integration into J2EE is

based on a few Enterprise

JavaBeans (EJBs) which need

no redeployment when

software changes. Users,

transactions, sessions and the database are fully

shared. ercatons therefore do not introduce

new complexity into an existing J2EE

application.

The following analogy may help to understand: “if J2EE is an

operating system, then ercatons add to it what the many

ercatoJ

1. Frequently refactor the entire J2EE model

2. Let the J2EE model contain “generic parts”

The first leads to overly complex projects because even a

simple change is a tedious and error-prone procedure. Some

changes are close to impossible after the application went

productive.

The second alternative leads to projects where most of the

time is spent to create or use a technical framework to

handle the genericity: the initial business model moves out of

focus.

Both, J2EE frameworks and J2EE-

aware IDEs only push the limit a bit

without eliminating it.

Therefore, in the typical large-scale

J2EE project, most of the time is spent “to integrate, redeploy

and address technical issues”.

ercatoJ offers a way out by proposing a third option:

3. Keep the J2EE model small and focused.

XML problems solved

XML has grown

very poular and

the marketplace

proposes several

XML-based

application servers

or XML

databases.

It is probably true

that corporate

data is best stored

in the form of XML. However, there are four problems which

can be addressed using ercatoJ:

1. Retrieval of XML is slow and not standardized

2. XML data is often restricted to a schema

3. Unlike J2EE, XML application servers are

proprietary

4. Object-oriented modelling is not supported

(only mapped)

ercatoJ offers an alternative because many of the

advantages of XML are made available within a J2EE

Usage examples

The ercato programming model encourages an

iterative development style. Focus on one problem

at a time. When one aspect is finished it is easily

integrated into a changing environment. Examples?

Assume you want to add business methods, data

fields or constraints. Then add some lines of

XML to an ercaton and possibly add some Java

code, too. Now just copying the changed

ercaton and possibly the changed

jar archive will do the job. It is

that easy. The J2EE

application needs no

redeployment and no

interruption of service is going to

occurr (the copy operation is

transaction-safe).

Assume you require another

column (or table) in your database

scheme, e.g., for a query operation.

Then you only need to add an XML-tag to one

(index-)ercaton and one XML-attribute to one (base-

)ercaton. That is it. The content of the new column is

now even going to reflect the production data which

existed before

and no

interruption of

service is

going to

occur.

Assume you

frequently

change the

business

logic and do

not want to update the user interface. Then

alternatively you may create a style

sheet or customize the ercatoJ

standard web style sheet. You do

this once forever. Possibly

combined with your

JSPs you end up with

a user interface which stays in sync with

the business logic and provides support

for viewing, editing, navigation and

complex search.

ercatoJ anatomy

ercatoJ uses bright ideas from several ancestors.

It uses XML to represent and persist rich structures,

XSLT may express business logic and views.

It uses SQL as an accelerator for unsacrificed

performance. Even inner and outer joins are

available. However, SQL as a language is

considered deprecated.

It uses and complements J2EE,

e.g., transactions, sessions,

authentication.

It uses an extended Unix file

system semantics (incl. x- and

s-bits) to express rôle-based

permissions by instance, not by

class. As a consequence,

protection ensures that two different

rôles may see different data from

the same SQL query.

It uses Java and its object-oriented model. Business

logic may be expressed in arbitrary Java.

It uses the Unix philosophy of many small building

blocks which cooperate towards a

whole which is more than the sum

of its parts. ercatons are the

parts, the J2EE application is the

whole. The concept of several users conributing

parts in a secure manner is implemented, too.

It uses the concept of prototype-based languages

such as ‘Self’ where objects are created without a

class.

How it all works

ercatons are the result of the ercato project to

create a server environment which does not just

export web services but is actually fully

programmable using web services. In this context,

many shortcomings of web services have been

addressed and a decent security model has been

created, to start with.

In all traditional J2EE frameworks and J2EE itself,

XML plays a helper role, as carrier of data from

model to view, or from one application to another, or

as a configuration language. In contrast, ercatoJ

treats XML as what it is: a first

class citizen. It is the first and only

J2EE-based product which does

so: XML documents contain and

store all the business data plus as

much business logic as is required.

But why is the ercato programming model that

powerful? Because it exactly starts from the simple

idea we mentioned above: treat every XML

document as being an object (and call it an

ercaton). Inheritance, polymorphism, encapsulation,

persistence, methods,

appearance etc. may all be

expressed at the declarative level

of XML. This includes some

properties of real-world objects

which software objects usually do not posses.

Additionally, the full procedural power of Java and

J2EE is made available as well.

Did you ever wonder why you should care about the

distinction between object and class when creating

an UML business model? ercatons make this

distinction obsolete and in many cases, an ercaton

just is the perfect representation of a business object

or process. On the other hand, an ercaton looks as

much as a Java object to Java code as you want it.

There is nothing to sacrifice.

Consider the following scenario: “In some

application, customer data is expressed as an XML

document with actually no Java involved. At the

same time, a customer’s account is expressed as

an entity bean delegating to an account class. Both,

customer and account have been modelled as

objects (ercaton and Java class).” We anticipate and

fully support this situation. Of course, an SQL

database will be involved, too. For maximum

freedom, ercatoJ does not restrict ercatons to any

XML schema (or XML at all...) and any Java class is

able to interoperate. It is not very elegant but

perfectly legal for some Java code to manipulate an

ercaton at the XML-DOM level.

ercatons represent business data and business

logic at the XML level. This may have introduced

problems at the levels of orthogonality and

redundancy, change management,

or consistency. Yes, and ercatoJ

solves all of them.

It is impossible in this booklet to

discuss the background of prototype-based

languages or XML node-set algebra which are part

of the scientific foundation of the ercato

programming model. Rather, we just claim the

following here: “Once an example of a business

object or a description of a business process is

written down (in XML, maybe using a text editor), the

implementation of this object or process as part of a

J2EE application is already complete or very close to

completion”. You probably need to see to believe.

ercatons boldly go where no ejb has gone before

Key benefits:

. . for your project

edit-compile-test in seconds

hot deployment in production

separation of concerns

lines of code reduced

iterative approach is encouraged

quick response to requests for change

. . for your development work

fewer J2EE pitfalls

faster or no EJB deployment

less or no SQL required

no XML schema required

focus on business processes

. . for your product

possibly richer functionality

configurable and safe queries

modifications possible with no

interruption of service

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Operating system + SQL database

J2EE application server

SAP R/3

Your enterprise solution

ercatoJ Available modules:

support API

manager

 standard extensions, level 1

layer

advanced ersioning

service

customizable web style

enhanced web experience

remote login and scripting

(*) in v1.2
(ercatoJ and ercato.NET modules share ercato and ercatoX modules)

ask for product details

ercatoJ
] ercatoJ Base

] ercatoJ EJB

] ercatoJ TagLib (*)

] ercatoJ User

] ercatoX One

] ercato Persistence

] ercato Versions v

] ercato WebServices

] ercato InheritanceForXML

] ercato Query

] ercato SecureRôles

] ercato WebView

] ercato WebXP

] ercato Edit+Forms

] ercato Backup+Replication

] ercato Shell

] ercato WebDAV (*)

ercaton

Permission
model

XML

SQL

Java

J2EE

“Ercatons were easy to use and breathtakingly

efficient. Once you get the idea you wonder how

you ever worked without it.”

Dr. Ralf Marsula

Clavis GmbH, Bremen Solution Partner SAP

Every ercaton
encapsulates a business

object or process

Keep the J2EE model
small and focused

Every XML document
is an object

Every ercaton you
introduce absorbs

complexity

If J2EE is an operating
system, then ercatons add
to it what the many small

/usr/bin binaries add to Unix:
power and simplicity

At a glance:
how can help

ercatoJ can reduce project complexity because it is

built upon an amazingly simple yet powerful

concept: ercatons.

Every ercaton encapsulates a business object or

process and absorbs complexity.

ercatons live within the Java2 EnterpriseEdition

(J2EE) container and are built from Java objects and

XML documents. They are able to implement most

patterns in enterprise software development.

Their integration into J2EE is

based on a few Enterprise

JavaBeans (EJBs) which need

no redeployment when

software changes. Users,

transactions, sessions and the database are fully

shared. ercatons therefore do not introduce new

complexity into an existing J2EE application.

The following analogy may help to understand: “if

J2EE is an operating system, then ercatons add to it

what the many small /usr/bin binaries add to Unix:

power and simplicity”.

This analogy holds true to the point where ercatons

are not yet another framework to build this big, monolithic

application – they offer an option to build a simpler one.

J2EE problems solved

J2EE is the best standardized application server architecture

available. Still it has problems which can be addressed using

ercatoJ:

The J2EE blueprints assume that all relevant details of the

business model (as expressed at an UML level) are

implemented as EJBs and that retrievable

business data maps to persistent attributes.

This assumption is fine for a project following

the waterfall model: every detail is designed

first, then implemented.

However, many successful projects follow the

model of the Agile Process: start with a

simple system and iterate until the project goal is reached.

Such projects are left with two alternatives:

ercatoJ

1. Frequently refactor the entire J2EE model

2. Let the J2EE model contain “generic parts”

The first leads to overly complex projects because even a

simple change is a tedious and error-prone procedure. Some

changes are close to impossible after the application went

productive.

The second alternative leads to projects where most of the

time is spent to create or use a technical framework to

handle the genericity: the initial business model moves out of

focus.

Both, J2EE frameworks and J2EE-

aware IDEs only push the limit a bit

without eliminating it.

Therefore, in the typical large-scale

J2EE project, most of the time is spent “to integrate, redeploy

and address technical issues”.

ercatoJ offers a way out by proposing a third option:

3. Keep the J2EE model small and focused.

XML problems solved

XML has grown

very poular and

the marketplace

proposes several

XML-based

application servers

or XML

databases.

It is probably true

that corporate

data is best stored

in the form of XML. However, there are four problems which

can be addressed using ercatoJ:

1. Retrieval of XML is slow and not standardized

2. XML data is often restricted to a schema

3. Unlike J2EE, XML application servers are

proprietary

4. Object-oriented modelling is not supported

(only mapped)

ercatoJ offers an alternative because many of the

advantages of XML are made available within a J2EE

Usage examples

The ercato programming model encourages an

iterative development style. Focus on one problem

at a time. When one aspect is finished it is easily

integrated into a changing environment. Examples?

Assume you want to add business methods, data

fields or constraints. Then add some lines of

XML to an ercaton and possibly add some Java

code, too. Now just copying the changed

ercaton and possibly the changed

jar archive will do the job. It is

that easy. The J2EE

application needs no

redeployment and no

interruption of service is going to

occurr (the copy operation is

transaction-safe).

Assume you require another

column (or table) in your database

scheme, e.g., for a query operation.

Then you only need to add an XML-tag to one

(index-)ercaton and one XML-attribute to one (base-

)ercaton. That is it. The content of the new column is

now even going to reflect the production data which

existed before

and no

interruption of

service is

going to

occur.

Assume you

frequently

change the

business

logic and do

not want to update the user interface. Then

alternatively you may create a style

sheet or customize the ercatoJ

standard web style sheet. You do

this once forever. Possibly

combined with your

JSPs you end up with

a user interface which stays in sync with

the business logic and provides support

for viewing, editing, navigation and

complex search.

ercatoJ anatomy

ercatoJ uses bright ideas from several ancestors.

It uses XML to represent and persist rich structures,

XSLT may express business logic and views.

It uses SQL as an accelerator for unsacrificed

performance. Even inner and outer joins are

available. However, SQL as a language is

considered deprecated.

It uses and complements J2EE,

e.g., transactions, sessions,

authentication.

It uses an extended Unix file

system semantics (incl. x- and

s-bits) to express rôle-based

permissions by instance, not by

class. As a consequence,

protection ensures that two different

rôles may see different data from

the same SQL query.

It uses Java and its object-oriented model. Business

logic may be expressed in arbitrary Java.

It uses the Unix philosophy of many small building

blocks which cooperate towards a

whole which is more than the sum

of its parts. ercatons are the

parts, the J2EE application is the

whole. The concept of several users conributing

parts in a secure manner is implemented, too.

It uses the concept of prototype-based languages

such as ‘Self’ where objects are created without a

class.

How it all works

ercatons are the result of the ercato project to

create a server environment which does not just

export web services but is actually fully

programmable using web services. In this context,

many shortcomings of web services have been

addressed and a decent security model has been

created, to start with.

In all traditional J2EE frameworks and J2EE itself,

XML plays a helper role, as carrier of data from

model to view, or from one application to another, or

as a configuration language. In contrast, ercatoJ

treats XML as what it is: a first

class citizen. It is the first and only

J2EE-based product which does

so: XML documents contain and

store all the business data plus as

much business logic as is required.

But why is the ercato programming model that

powerful? Because it exactly starts from the simple

idea we mentioned above: treat every XML

document as being an object (and call it an

ercaton). Inheritance, polymorphism, encapsulation,

persistence, methods,

appearance etc. may all be

expressed at the declarative level

of XML. This includes some

properties of real-world objects

which software objects usually do not posses.

Additionally, the full procedural power of Java and

J2EE is made available as well.

Did you ever wonder why you should care about the

distinction between object and class when creating

an UML business model? ercatons make this

distinction obsolete and in many cases, an ercaton

just is the perfect representation of a business object

or process. On the other hand, an ercaton looks as

much as a Java object to Java code as you want it.

There is nothing to sacrifice.

Consider the following scenario: “In some

application, customer data is expressed as an XML

document with actually no Java involved. At the

same time, a customer’s account is expressed as

an entity bean delegating to an account class. Both,

customer and account have been modelled as

objects (ercaton and Java class).” We anticipate and

fully support this situation. Of course, an SQL

database will be involved, too. For maximum

freedom, ercatoJ does not restrict ercatons to any

XML schema (or XML at all...) and any Java class is

able to interoperate. It is not very elegant but

perfectly legal for some Java code to manipulate an

ercaton at the XML-DOM level.

ercatons represent business data and business

logic at the XML level. This may have introduced

problems at the levels of orthogonality and

redundancy, change management,

or consistency. Yes, and ercatoJ

solves all of them.

It is impossible in this booklet to

discuss the background of prototype-based

languages or XML node-set algebra which are part

of the scientific foundation of the ercato

programming model. Rather, we just claim the

following here: “Once an example of a business

object or a description of a business process is

written down (in XML, maybe using a text editor), the

implementation of this object or process as part of a

J2EE application is already complete or very close to

completion”. You probably need to see to believe.

ercatoJ

Living Pages
R e s e a r c h

In your J2EE project,

' development takes
42 percent longer

than the worst
estimate?

' progress has
slowed down?

' hours of delay
between coding

and testing?

' builds are a
nightmare?

' multiday transition to live
systems?

' your architecture becomes
obfuscated?

' business logic moves into JSPs?

cut the Gordian knot

cut J2EE project complexity

to solve and to innovate

ercatoJ

ercatoJ

ercatoJ

 at Henkel Group: a selected customer reference

The Henkel Group (Henkel KGaA,

Düsseldorf, Germany) operates in

three strategic business areas - Home

Care, Personal Care, and Adhesives,

Sealants and Surface Treatment. The

Company is represented in over 75

countries. 48,515 employees work for

the Henkel Group worldwide.

Henkel Fragrance Center GmbH

(HFC) develops and produces

perfume oils which are indispensable

components for many products of the

group.

Living Pages has developed and

deployed the new central software

system at HFC. This mission-critical

enterprise solution supports every

single business process of perfume

development and is fully productive.

The software is a state-of-the-art J2EE intranet

solution and utilzes the technology in all its

modules.

The system interfaces with several isolated

applications and is fully integrated into the

corporate environment of SAP/R3 servers.

It is fair to say that this solution could not have been

realized without . The savings in man power

and elapsed time have been crucial for success.

Get more information:
Please contact Dr. Falk Langhammer at

info@living-pages.de

Living Pages Research GmbH

Kolosseumstraße 1a

D-80469 München

Germany

Ph.: +49 (89) 189207-20

Fax: +49 (89) 189207-29 www.living-pages.de/ercatoj

“Ungeachtet der komplexen Materie wurde das Problem hervorragend gelöst

sowie Zeitrahmen und Budget eingehalten. Bei der Lösung unseres

geschäftskritischen Problems wurden unsere Erwartungen voll erfüllt. Mit der

eingesetzten Softwaretechnologie gelingt es offenbar gut, auch komplexere

Probleme in den Griff zu bekommen.”

[The complex issue notwithstanding the problem has been solved

outstandingly well and still within time and budget. The solution of our mission-

critical problem has met all our expectations. It is obvious that the deployed

software technology is well suited to address

problems of a more complex nature, too.]

Dr. Alexander Boeck

Geschäftsführer [Managing Director]

Henkel Fragrance Center GmbH

ercatoJ Fact Sheet

J2EE integration

lightweight integration stub

 (4 EJBs, 3 servlets)

shares users, transaction and

 session contexts

standalone for EJB-free projects is available

code archives (JARs) not required in EAR

callable by / may call other EJBs

Deployment

deployment without EJB re-deployment

deployment and testing are scriptable

sub-deployments are supported

Component-based technology

business logic encapsulated

 in small components

pool of useful components provided

extensible even in running application

stand-alone components (ercatons)

each component may define a web-service

Programming models

by Java API

by manipulation / transformation of XML

object-oriented at both, Java and XML level

declaration of actions / constraints / triggers

3rd-party XML mapping frameworks work

User interface

optional, customizable web interface

pre-configured edit cycle provided

Workflow

follow-up actions are supported

Security control

per action / method and instance

protected data not exposed by queries

Persistence technology

true XML is persisted, not just mapped

no schema required

transaction-isolation level

accessible to text and XML tools

Database

SQL used for full retrieval performance

database schema follows data on the fly

combines with existing tables

JDBC/JDO is enabled but not required

Requirements

JDK 1.4

Oracle 9iAS or Orion 2.0

IBM Websphere 5.0 (*)

BEA Weblogic 8.1 (*)

JBoss 3.2 (*)

Oracle 9i

MySQL MaxDB 7.4 (*)

Availability

v1.0: now

v1.1: 4th quarter 2003

by Living Pages Research GmbH,

 Munich, Germany

(*): supported, yet to be certified for production use

ercatoJ

e
rc

at
o
,
e
rc

at
o
n
s,

 a
n
d

 e
rc

at
o
J

a
re

 t
ra

d
e
m

a
rk

s
o
f

L
iv

in
g
 P

a
g
e
s

R
e
se

a
rc

h
 G

m
b

H
Ja

va
,
J2

E
E

,
E

JB
,
E

n
te

rp
ris

e
 J

av
aB

e
a
n
s,

 a
n
d

JD

K
 a

re
 r
e
g
is

te
re

d
 t
ra

d
e
m

ar
ks

 o
f
S

u
n

M
ic

ro
sy

st
e
m

s,
 In

c
.

a
ll

tr
a
d

e
m

ar
ks

 a
c
kn

o
w

le
d

g
e
d

©
 2

0
0

3
 L

iv
in

g
 P

a
g
e
s

R
e
se

a
rc

h
 G

m
b

H

Living Pages
R e s e a r c h

ercatoJ

Living Pages
R e s e a r c h

In your J2EE project,

' development takes
42 percent longer

than the worst
estimate?

' progress has
slowed down?

' hours of delay
between coding

and testing?

' builds are a
nightmare?

' multiday transition to live
systems?

' your architecture becomes
obfuscated?

' business logic moves into JSPs?

cut the Gordian knot

cut J2EE project complexity

to solve and to innovate

ercatoJ

ercatoJ

ercatoJ

 at Henkel Group: a selected customer reference

The Henkel Group (Henkel KGaA,

Düsseldorf, Germany) operates in

three strategic business areas - Home

Care, Personal Care, and Adhesives,

Sealants and Surface Treatment. The

Company is represented in over 75

countries. 48,515 employees work for

the Henkel Group worldwide.

Henkel Fragrance Center GmbH

(HFC) develops and produces

perfume oils which are indispensable

components for many products of the

group.

Living Pages has developed and

deployed the new central software

system at HFC. This mission-critical

enterprise solution supports every

single business process of perfume

development and is fully productive.

The software is a state-of-the-art J2EE intranet

solution and utilzes the technology in all its

modules.

The system interfaces with several isolated

applications and is fully integrated into the

corporate environment of SAP/R3 servers.

It is fair to say that this solution could not have been

realized without . The savings in man power

and elapsed time have been crucial for success.

Get more information:
Please contact Dr. Falk Langhammer at

info@living-pages.de

Living Pages Research GmbH

Kolosseumstraße 1a

D-80469 München

Germany

Ph.: +49 (89) 189207-20

Fax: +49 (89) 189207-29 www.living-pages.de/ercatoj

“Ungeachtet der komplexen Materie wurde das Problem hervorragend gelöst

sowie Zeitrahmen und Budget eingehalten. Bei der Lösung unseres

geschäftskritischen Problems wurden unsere Erwartungen voll erfüllt. Mit der

eingesetzten Softwaretechnologie gelingt es offenbar gut, auch komplexere

Probleme in den Griff zu bekommen.”

[The complex issue notwithstanding the problem has been solved

outstandingly well and still within time and budget. The solution of our mission-

critical problem has met all our expectations. It is obvious that the deployed

software technology is well suited to address

problems of a more complex nature, too.]

Dr. Alexander Boeck

Geschäftsführer [Managing Director]

Henkel Fragrance Center GmbH

ercatoJ Fact Sheet

J2EE integration

lightweight integration stub

 (4 EJBs, 3 servlets)

shares users, transaction and

 session contexts

standalone for EJB-free projects is available

code archives (JARs) not required in EAR

callable by / may call other EJBs

Deployment

deployment without EJB re-deployment

deployment and testing are scriptable

sub-deployments are supported

Component-based technology

business logic encapsulated

 in small components

pool of useful components provided

extensible even in running application

stand-alone components (ercatons)

each component may define a web-service

Programming models

by Java API

by manipulation / transformation of XML

object-oriented at both, Java and XML level

declaration of actions / constraints / triggers

3rd-party XML mapping frameworks work

User interface

optional, customizable web interface

pre-configured edit cycle provided

Workflow

follow-up actions are supported

Security control

per action / method and instance

protected data not exposed by queries

Persistence technology

true XML is persisted, not just mapped

no schema required

transaction-isolation level

accessible to text and XML tools

Database

SQL used for full retrieval performance

database schema follows data on the fly

combines with existing tables

JDBC/JDO is enabled but not required

Requirements

JDK 1.4

Oracle 9iAS or Orion 2.0

IBM Websphere 5.0 (*)

BEA Weblogic 8.1 (*)

JBoss 3.2 (*)

Oracle 9i

MySQL MaxDB 7.4 (*)

Availability

v1.0: now

v1.1: 4th quarter 2003

by Living Pages Research GmbH,

 Munich, Germany

(*): supported, yet to be certified for production use

ercatoJ
e
rc

at
o
,
e
rc

at
o
n
s,

 a
n
d

 e
rc

at
o
J

a
re

 t
ra

d
e
m

a
rk

s
o
f

L
iv

in
g
 P

a
g
e
s

R
e
se

a
rc

h
 G

m
b

H
Ja

va
,
J2

E
E

,
E

JB
,
E

n
te

rp
ris

e
 J

av
aB

e
a
n
s,

 a
n
d

JD

K
 a

re
 r
e
g
is

te
re

d
 t
ra

d
e
m

ar
ks

 o
f
S

u
n

M
ic

ro
sy

st
e
m

s,
 In

c
.

a
ll

tr
a
d

e
m

ar
ks

 a
c
kn

o
w

le
d

g
e
d

©
 2

0
0

3
 L

iv
in

g
 P

a
g
e
s

R
e
se

a
rc

h
 G

m
b

H

Living Pages
R e s e a r c h

